3.4.63 \(\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\cos (c+d x)}} \, dx\) [363]

Optimal. Leaf size=82 \[ -\frac {\sqrt {2} \text {ArcSin}\left (\frac {\sin (c+d x)}{1+\cos (c+d x)}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {1+\cos (c+d x)}} \]

[Out]

-arcsin(sin(d*x+c)/(1+cos(d*x+c)))*2^(1/2)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2*sin(d*x+c)*sec(d*x+c)^(1/2)/d
/(1+cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {4307, 2858, 2860, 222} \begin {gather*} \frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {\cos (c+d x)+1}}-\frac {\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \text {ArcSin}\left (\frac {\sin (c+d x)}{\cos (c+d x)+1}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(3/2)/Sqrt[1 + Cos[c + d*x]],x]

[Out]

-((Sqrt[2]*ArcSin[Sin[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d) + (2*Sqrt[Sec[c +
 d*x]]*Sin[c + d*x])/(d*Sqrt[1 + Cos[c + d*x]])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2858

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Dist[
1/(2*b*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e
+ f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
 b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2860

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[-Sqr
t[2]/(Sqrt[a]*f), Subst[Int[1/Sqrt[1 - x^2], x], x, b*(Cos[e + f*x]/(a + b*Sin[e + f*x]))], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d, a/b] && GtQ[a, 0]

Rule 4307

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\cos (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {1+\cos (c+d x)}} \, dx\\ &=\frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {1+\cos (c+d x)}}-\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {1+\cos (c+d x)}} \, dx\\ &=\frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {1+\cos (c+d x)}}+\frac {\left (\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2}} \, dx,x,-\frac {\sin (c+d x)}{1+\cos (c+d x)}\right )}{d}\\ &=-\frac {\sqrt {2} \sin ^{-1}\left (\frac {\sin (c+d x)}{1+\cos (c+d x)}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {1+\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 2.05, size = 178, normalized size = 2.17 \begin {gather*} \frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) \sin \left (\frac {1}{2} (c+d x)\right ) \left (\frac {1}{2} \cos (c+d x) (2+\cos (c+d x)) \csc ^4\left (\frac {1}{2} (c+d x)\right ) \left (1-\cos (c+d x)+\tanh ^{-1}\left (\sqrt {-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cos (c+d x) \sqrt {2-2 \sec (c+d x)}\right )-\frac {1}{10} \, _2F_1\left (2,\frac {5}{2};\frac {7}{2};-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x) \tan (c+d x)\right )}{d \sqrt {1+\cos (c+d x)}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^(3/2)/Sqrt[1 + Cos[c + d*x]],x]

[Out]

(2*Cos[(c + d*x)/2]*Sec[c + d*x]^(3/2)*Sin[(c + d*x)/2]*((Cos[c + d*x]*(2 + Cos[c + d*x])*Csc[(c + d*x)/2]^4*(
1 - Cos[c + d*x] + ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cos[c + d*x]*Sqrt[2 - 2*Sec[c + d*x]]))/2
 - (Hypergeometric2F1[2, 5/2, 7/2, -(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]*Sin[c + d*x]*Tan[c + d*x])/10))/(d*Sqrt
[1 + Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.20, size = 144, normalized size = 1.76

method result size
default \(\frac {\left (\sqrt {2}\, \cos \left (d x +c \right ) \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\sqrt {2}\, \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+2 \sin \left (d x +c \right )\right ) \cos \left (d x +c \right ) \sqrt {2+2 \cos \left (d x +c \right )}\, \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sqrt {2}}{2 d \left (1+\cos \left (d x +c \right )\right )}\) \(144\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/d*(2^(1/2)*cos(d*x+c)*arcsin((-1+cos(d*x+c))/sin(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+2^(1/2)*arcsin(
(-1+cos(d*x+c))/sin(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+2*sin(d*x+c))*cos(d*x+c)*(2+2*cos(d*x+c))^(1/2)*
(1/cos(d*x+c))^(3/2)/(1+cos(d*x+c))*2^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: sign: argument cannot be imaginary
; found %i

________________________________________________________________________________________

Fricas [A]
time = 0.44, size = 86, normalized size = 1.05 \begin {gather*} \frac {{\left (\sqrt {2} \cos \left (d x + c\right ) + \sqrt {2}\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) + \frac {2 \, \sqrt {\cos \left (d x + c\right ) + 1} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{d \cos \left (d x + c\right ) + d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

((sqrt(2)*cos(d*x + c) + sqrt(2))*arctan(sqrt(2)*sqrt(cos(d*x + c) + 1)*sqrt(cos(d*x + c))/sin(d*x + c)) + 2*s
qrt(cos(d*x + c) + 1)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )} + 1}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(3/2)/(1+cos(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**(3/2)/sqrt(cos(c + d*x) + 1), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(3/2)/sqrt(cos(d*x + c) + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {\cos \left (c+d\,x\right )+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(3/2)/(cos(c + d*x) + 1)^(1/2),x)

[Out]

int((1/cos(c + d*x))^(3/2)/(cos(c + d*x) + 1)^(1/2), x)

________________________________________________________________________________________